This table contains the metadata for the plates that went into USNO-B
1.0 as best as we can reconstruct it (i.e., largely those that also
make up the Digital Sky Survey DSS). Most of the source files were
obtained from http://www.nofs.navy.mil/data/fchpix/, some additional
contributions came from Dave Monet.
Accurate positional measurements of planets and satellites are used to improve their orbits, our knowledge of their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Mars, Phobos, and Deimos taken with the U.S. Naval Observatory 61-inch astrometric reflector and 26-inch refractor from 1967 to 1997. 425 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process which includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
The U.S. Naval Observatory CCD trigonometric parallax program is described in detail, including the instrumentation employed, observing procedures followed, and reduction procedures applied. Astrometric results are presented for 72 stars ranging in apparent brightness from V=15.16 to 19.58. Photometry (V and V-I on the Kron-Cousins system) is presented for the parallax stars and for all 426 individual reference stars employed in the astrometric solutions. Corrections for differential color refraction, calibrated to the observed V-I colors, have been applied to all astrometric measures. The mean errors in the relative parallaxes range from +/-0.0005" to +/-0.0027" with a median value of +/-0.0010". Seventeen of the 23 stars with V_tan_>200km/s form a well-delineated sequence of extreme subdwarfs covering 11.5<M_V_<14.5 in the M_V_ vs V-I diagram. The transformation to the M_bol_ vs log T_eff_ plane is presented and the results are compared with various model interior computations. Within the limitations due to the uncertain T_eff_ scale for cool dwarfs and subdwarfs, the coolest members of the extreme subdwarf sequence appear to be near the hydrogen-burning minimum mass limit for stars with metallicities of [M/H]~-2.
Trigonometric parallaxes, relative proper motions, and photometry are presented for 122 stars in 111 systems. Of these stars, 70 are brighter than V = 10.0.
Accurate positional measurements of planets and satellites are used to improve our knowledge of both their orbits and their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its major satellites taken with the U.S. Naval Observatory 26-inch refractor from 1974 to 1998. 526 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
This paper provides expressions to be used to implement the new definition of UT1 corresponding to the IAU 2000 resolutions either in the new (CEO-based) or classical (equinox-based) transformations between the International Terrestrial Reference System (ITRS) and the Geocentric Celestial Reference System (GCRS). The new expression for Greenwich Sidereal Time (GST) has to be in agreement at the micro-arcsecond level, for one century, with the IAU 2000 expressions for the Earth Rotation Angle (ERA) and for the quantity s positioning the Celestial Ephemeris Origin (CEO) on the equator of the CIP. The computations of the new expressions using the IAU 2000 precession-nutation model are performed in such a manner as to ensure that there is no discontinuity in UT1 on 1 January 2003 and that there is equivalence of the classical and new transformations between the ITRS and GCRS relative to the rotation about the axis of the CIP when these expressions are used. The equinox offset that is considered in the computations refers to the dynamical mean equinox of J2000.0. The resulting expressions have been included in the IERS Conventions 2000.
We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars), we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allow us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463km/s fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by lognormal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.
We present UBVR photometric observations of the 96-day binary system UU Cancri (K4 III) obtained in 1972-1994. A relatively large scatter in the orbital light curves turned out to be intrinsic with a modulating cycle lasting at least 8000 days. Using all available archived photographic and visual observations covering nearly 100 years, we find the orbital period of the system to be constant. This fact, together with the pattern of the colour curves, makes the existence of a powerful accretion disk in the system improbable.
We have determined column densities of H I and/or H_2_ for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Ly{alpha} and H_2_Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H_2_) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species) - enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Ly{alpha} absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H_2_absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Ly{alpha}) by factors of 2-3 in some LMC sight lines - suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(H_tot_)/E(B-V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC - i.e., factors similar to the differences in metallicity. The N(H_2_)/E(B-V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H_2_) based on comparisons of 21 cm emission and the IR emission from dust.
This work presents the main ultraviolet (UV) and far-infrared (FIR) properties of two samples of nearby galaxies selected from the GALEX ({lambda}=2315{AA}, hereafter NUV) and IRAS ({lambda}=60{mu}m) surveys, respectively. They are built in order to obtain detection at both wavelengths for most of the galaxies. Star formation rate (SFR) estimators based on the UV and FIR emissions are compared. Systematic differences are found between the SFR estimators for individual galaxies based on the NUV fluxes corrected for dust attenuation and on the total IR luminosity.