Number of results to display per page
Search Results
- ID:
- ivo://pds-ppi/voyager1_pws_sa/ppi/epn_core
- Title:
- Voyager 1 PWS Low Rate (Spectrum Analyzer) Data Files
- Short Name:
- VG1-PWS-SA
- Date:
- 15 Dec 2022 19:24:32
- Publisher:
- Planetary Data System
- Description:
- Voyager 1 PWS data in daily CDF files.
- ID:
- ivo://pds-ppi/voyager2_pws_sa/ppi/epn_core
- Title:
- Voyager 2 PWS Low Rate (Spectrum Analyzer) Data Files
- Short Name:
- VG2-PWS-SA
- Date:
- 15 Dec 2022 19:28:20
- Publisher:
- Planetary Data System
- Description:
- Voyager 2 PWS data in daily CDF file.
- ID:
- ivo://CDS.VizieR/J/AJ/161/102
- Title:
- VPDs and CMDs of Berkeley32, Berkeley98 and King23
- Short Name:
- J/AJ/161/102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the photometric and kinematical data from Gaia Data Release 2, three old open clusters namely Berkeley32 (Be32), Berkeley98 (Be98), and King23 are investigated. The latter two of these clusters are poorly studied in the literature. The numbers of the most probable cluster members are 563, 260, and 114 for Be32, Be98, and King23, respectively, with membership probabilities higher than 80% and lying within the clusters limiting radii. Mean proper motions (PMs; {mu}_{alpha}_cos_{delta}_ and {mu}_{delta}_) of the clusters are determined as (-0.34{+/-}0.008, -1.60{+/-}0.006), (-1.34{+/-}0.007, -3.22{+/-}0.008), and (-0.46{+/-}0.009, -0.87{+/-}0.012)mas/yr. The errors mentioned in the PMs are the Gaussian fitting errors. The blue straggler stars (BSS) in all three old clusters were found to exhibit centralized radial distribution. The clusters' radii are determined as 9.4', 12.95', and 6.6' for Be32, Be98, and King23 using radial density profiles. Ages of the clusters determined by isochrone fitting are 4.90{+/-}0.22, 3.23{+/-}0.15, and 1.95{+/-}0.22Gyr. The errors given in the clusters ages are the internal errors. The mass function slopes are found to be flatter than Salpeter's value for all three clusters. All three clusters are found to be dynamically relaxed. Galactic orbits are derived for these clusters, which demonstrate that the studied clusters follow a circular path around the Galactic center.
23955. V505 Per BV light curves
- ID:
- ivo://CDS.VizieR/J/A+A/480/465
- Title:
- V505 Per BV light curves
- Short Name:
- J/A+A/480/465
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The orbit and fundamental physical parameters of the double-lined eclipsing binary V505 Per are derived by means of Echelle high-resolution and high S/N spectroscopy, and B, V photometry. In addition, effective temperatures, gravities, rotational velocities, and metallicities of both components are also obtained from atmospheric chi^2^ analysis, showing an excellent match with the results of the orbital solution.
23956. V873 Per BVR light curves
- ID:
- ivo://CDS.VizieR/J/other/NewA/36.50
- Title:
- V873 Per BVR light curves
- Short Name:
- J/other/NewA/36.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a photometric study of a weak-contact binary V873 Per. New observations in BVR filter bands showed asymmetric light curves to be a negative type of the O'Connell effect, which can be described by magnetic activity of a cool spot on the more massive component. Our photometric solutions showed that V873 Per is a W-type with a mass ratio of q=2.504(+/-0.0029), confirming the results of Samec et al. (2009IBVS.5901....1S). The derived contact degree was found to be f=18.10%(+/-1.36%). Moreover, our analysis found the cyclic variation with the period of about 4yr that could be due to existence of the third companion in the system or the mechanism of magnetic activity cycle in the binary. While available data indicated that the long-term orbital period tends to be stable rather than decreasing.
- ID:
- ivo://CDS.VizieR/J/A+A/319/867
- Title:
- V436 Persei = 1 Persei byBV photometry
- Short Name:
- J/A+A/319/867
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Outline of a project aimed at testing the presence of rapid line-profile variations in the atmospheres of hot components of close binaries is presented and its first results are described. An analysis of new electronic spectra of the eclipsing binary V436 Per from three observatories and of photoelectric observations, obtained earlier by several authors, leads to a unique determination of all basic physical elements of this interesting object. The first practical application of a new method of spectral disentangling allowed us to obtain, for the first time, individual accurate line profiles of both binary components and to derive their rotational velocities and orbital radial-velocity curves. We also detected absorption sub-features travelling from blue to red accross the He I 6678 line profile, in a series of six spectra taken during one night. At least one of the components of V436 Per is, therefore, a new hot line-profile variable.
23958. V436 Persei UBV photometry
- ID:
- ivo://CDS.VizieR/J/A+A/408/611
- Title:
- V436 Persei UBV photometry
- Short Name:
- J/A+A/408/611
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An analysis of new spectroscopic and photoelectric UBV observations, satisfactorily covering the whole orbital period of V436 Per, together with existing data allowed us to improve the knowledge of the basic physical characteristics of the binary and its components. In several aspects, our new results differ from the findings of Paper I (Harmanec et al., 1997, Cat. <J/A+A/319/867>) of this series: In particular, we found that it is the star eclipsed in the secondary minimum which is slightly more massive and larger than the optical primary. We also conclude that the apsidal advance -- if present at all -- is much slower than that estimated in a previous study. The orbital period might be increasing by 0.28 s per year but also this finding is very uncertain and needs verification by future observations. It is encouraging to note that two completely independent sets of programs for light-curve solutions lead to identical results. A notable finding is that both binary components rotate with very similar -- if not identical -- rotational periods of 1.45d and 1.40d, much shorter than what would correspond to a 10.9d spin-orbit synchronization period at periastron. Rapid line-profile changes reported earlier could not be confirmed from new, dedicated series of high-resolution and S/N spectra.
- ID:
- ivo://CDS.VizieR/J/PAZh/35/199
- Title:
- V,pg light curves of NSV 9159
- Short Name:
- J/PAZh/35/199
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained 530 photographic magnitude estimates for the long-period classical Cepheid NSV 9159 (P=39d) in the plate collections of the Harvard Observatory and the Sternberg Astronomical Institute. Together with the currently available CCD observations from the ASAS-3 catalog, our data have allowed us to construct an O-C diagram spanning a time interval of 119 years. The O-C diagram has the shape of a parabola, which has made it possible to determine for the first time the quadratic light elements and to calculate the rate of evolutionary decrease in the period, 314.4(+/-7.3)s/yr, in agreement with the results of theoretical calculations for the second crossing of the instability strip. The available data reduced by the Eddington-Plakidis method do not reveal any noticeable random fluctuations in the period.
23960. VPHAS+ DR2 survey
- ID:
- ivo://CDS.VizieR/II/341
- Title:
- VPHAS+ DR2 survey
- Short Name:
- II/341
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The primary goal of the VST Photometric H{alpha} Survey of the Southern Galactic Plane and Bulge (VPHAS+) is to collect single-epoch ugri broad-band and Ha narrow-band photometry across the southern Galactic Plane within the latitude range -5{deg}<b<+5{deg} down to point source magnitudes of ~21 or better. The VPHAS+ footprint also includes the inner Galactic Bulge, defined as a 20x20 deg^2^ box around the Galactic Centre: this assures optical coverage of the full VVV footprint. For all massive OBA stars this survey is deep enough to explore all but the most heavily obscured locations of the southern Plane, reaching to >4kpc from the Sun. These data will increase the number of known southern emission line stars by up to an order of magnitude, yielding much better statistics on important short-lived types of object. The wide-area uniform photometry obtained will also facilitate stellar population studies, capable of tracing structure over much of the southern Plane. VPHAS+ will trawl the star-formation history of the Galaxy as seen in stellar remnants of all types.