- ID:
- ivo://CDS.VizieR/J/A+A/567/A8
- Title:
- WASP-46b g'r'i'z'JHK occultation light curves
- Short Name:
- J/A+A/567/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We aim to construct a spectral energy distribution (SED) for the emission from the dayside atmosphere of the hot Jupiter WASP-46b and to investigate its energy budget. We observed a secondary eclipse of WASP-46b simultaneously in the g'r'i'z'JHK bands using the GROND instrument on the MPG/ESO 2.2m telescope. Eclipse depths of the acquired light curves were derived to infer the brightness temperatures at multibands that cover the SED peak. We report the first detection of the thermal emission from the dayside of WASP-46b in the K band at 4.2-sigma level and tentative detections in the H (2.5-sigma) and J (2.3-sigma) bands, with flux ratios of 0.253^+0.063^_-0.060_%, 0.194+/-0.078%, and 0.129+/-0.055%, respectively. The derived brightness temperatures (2306^+177^_-187_K, 2462^+245^_-302_K, and 2453^+198^_-258_K, respectively) are consistent with an isothermal temperature profile of 2386K, which is significantly higher than the dayside-averaged equilibrium temperature, indicative of very poor heat redistribution efficiency. We also investigate the tentative detections in the g'r'i' bands and the 3-sigma upper limit in the z' band, which might indicate the existence of reflective clouds if these tentative detections do not arise from systematics.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/446/2428
- Title:
- WASP-31b:HST/Spitzer transmission spectral survey
- Short Name:
- J/MNRAS/446/2428
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Hubble Space Telescope optical and near-IR transmission spectra of the transiting hot-Jupiter WASP-31b. The spectrum covers 0.3-1.7 {mu}m at a resolution R~70, which we combine with Spitzer photometry to cover the full-optical to IR. The spectrum is dominated by a cloud deck with a flat transmission spectrum which is apparent at wavelengths >0.52{mu}m. The cloud deck is present at high altitudes and low pressures, as it covers the majority of the expected optical Na line and near-IR H_2_O features. While Na I absorption is not clearly identified, the resulting spectrum does show a very strong potassium feature detected at the 4.2{sigma} confidence level. Broadened alkali wings are not detected, indicating pressures below ~10 mbar. The lack of Na and strong K is the first indication of a sub-solar Na/K abundance ratio in a planetary atmosphere (ln[Na/K]=-3.3+/-2.8), which could potentially be explained by Na condensation on the planet's night side, or primordial abundance variations. A strong Rayleigh scattering signature is detected at short wavelengths, with a 4{sigma} significant slope. Two distinct aerosol size populations can explain the spectra, with a smaller sub-micron size grain population reaching high altitudes producing a blue Rayleigh scattering signature on top of a larger, lower lying population responsible for the flat cloud deck at longer wavelengths. We estimate that the atmospheric circulation is sufficiently strong to mix micron size particles upwards to the required 1-10 mbar pressures, necessary to explain the cloud deck. These results further confirm the importance of clouds in hot Jupiters, which can potentially dominate the overall spectra and may alter the abundances of key gaseous species.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A136
- Title:
- WASP-18b HST/WFC3 spectroscopic phase curves
- Short Name:
- J/A+A/625/A136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the analysis of a full-orbit, spectroscopic phase curve of the ultra hot Jupiter (UHJ) WASP-18b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We measured the normalised day-night contrast of the planet as >0.96 in luminosity: the disc-integrated dayside emission from the planet is at 964+/-25ppm, corresponding to 2894+/-30K, and we place an upper limit on the nightside emission of <32ppm or 1430K at the 3{sigma}level. We also find that the peak of the phase curve exhibits a small, but significant oset in brightness of 4.5+/-0.5 degrees eastward. We compare the extracted phase curve and phase-resolved spectra to 3D global circulation models and find that broadly the data can be well reproduced by some of these models. We find from this comparison several constraints on the atmospheric properties of the planet. Firstly we find that we need ecient drag to explain the very inefficient day-night recirculation observed.We demonstrate that this drag could be due to Lorentz-force drag by a magnetic field as weak as 10 gauss. Secondly, we show that a high metallicity is not required to match the large day-night temperature contrast. In fact, the effect of metallicity on the phase curve is different from cooler gas-giant counterparts because of the high-temperature chemistry in the atmosphere of WASP-18b. Additionally, we compared the current UHJ spectroscopic phase curves, WASP-18b and WASP-103b, and show that these two planets provide a consistent picture with remarkable similarities in their measured and inferred properties. However, key differences in these properties, such as their brightness osets and radius anomalies, suggest that UHJ could be used to separate between competing theories for the inflation of gas-giant planets.
- ID:
- ivo://CDS.VizieR/J/A+A/530/A5
- Title:
- WASP-4b Ks-band detection of thermal emission
- Short Name:
- J/A+A/530/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Secondary eclipses are a powerful tool to measure directly the thermal emission from extrasolar planets, and to constrain their type and physical parameters. We started a project to obtain reliable broad-band measurements of the thermal emission of transiting exoplanets. Ground-based high-cadence near-infrared relative photometry was used to obtain a sub-millimagnitude precision light curve of a secondary eclipse of WASP-4b -- a 1.12M_J_ hot Jupiter on a 1.34-day orbit around G7V star. The data show a clear ~10{sigma} detection of the planet's thermal emission at 2.2{mu}. The calculated thermal emission corresponds to a fractional eclipse depth of 0.185^+0.014^_-0.013_%, with a related brightness temperature in Ks of T_B_=1995+/-40K, centered at Tc=2455102.61162^+0.00071^_-0.00077_HJD. We could set a limit on the eccentricity of e*cos{omega}=0.0027+/-0.0018, compatible with a near-circular orbit. The calculated brightness temperature, and the specific models suggest a highly inefficient redistribution of heat from the day-side to the night-side of the planet, and a consequent emission mainly from the day-side. The high-cadence ground-based technique is capable of detecting the faint signal of the secondary eclipse of extrasolar planets, which makes it a valuable complement to space-based mid-IR observations.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A86
- Title:
- WASP-48b Ks-band occultation lightcurves
- Short Name:
- J/A+A/615/A86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a detection of thermal emission from the hot Jupiter WASP-48b in the Ks-band. We used the Wide-field Infra-red Camera on the 3.6-m Canada-France Hawaii Telescope to observe an occultation of the planet by its host star. From the resulting occultation lightcurve we find a planet-to-star contrast ratio in the Ks-band of 0.136+/-0.014% , in agreement with the value of 0.109+/-0.027% previously determined. We fit the two Ks-band occultation lightcurves simultaneously with occultation lightcurves in the H-band and the Spitzer 3.6-um and 4.5-um bandpasses, radial velocity data, and transit lightcurves. From this, we revise the system parameters and construct the spectral energy distribution (SED) of the dayside atmosphere. By comparing the SED with atmospheric models, we find that both models with and without a thermal inversion are consistent with the data. We find the planet's orbit to be consistent with circular (e<0.072 at 3 sigma).
24156. WASP-71b light curve
- ID:
- ivo://CDS.VizieR/J/A+A/552/A120
- Title:
- WASP-71b light curve
- Short Name:
- J/A+A/552/A120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242+/-0.080M_Jup_) planet which transits a bright (V=10.6), evolved F8 star every 2.9-days. The planet, WASP-71b, is larger than Jupiter (1.46+/-0.13R_Jup_), but less dense (0.71+/-0.16{rho}_Jup_). We also report spectroscopic observations made during transit with the CORALIE spectrograph, which allow us to make a highly-significant detection of the Rossiter-McLaughlin effect. We determine the sky-projected angle between the stellar-spin and planetary-orbit axes to be {lambda}=20.1+/-9.7degrees, i.e. the system is "aligned", according to the widely-used alignment criteria that systems are regarded as misaligned only when {lambda} is measured to be greater than 10 degrees with 3-{sigma} confidence.
24157. WASP-21b light curves
- ID:
- ivo://CDS.VizieR/J/MNRAS/497/5182
- Title:
- WASP-21b light curves
- Short Name:
- J/MNRAS/497/5182
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the optical transmission spectrum of the highly inflated Saturn- mass exoplanet WASP-21b, using three transits obtained with the ACAM instrument on the William Herschel Telescope through the LRG-BEASTS survey (Low Resolution Ground-Based Exoplanet Atmosphere Survey using Transmission Spectroscopy). Our transmission spectrum covers a wavelength range of 4635-9000{AA}, achieving an average transit depth precision of 197ppm compared to one atmospheric scale height at 246ppm. We detect NaI absorption in a bin width of 30{AA}, at >4{sigma} confidence, which extends over 100{AA}. We see no evidence of absorption from KI. Atmospheric retrieval analysis of the scattering slope indicates it is too steep for Rayleigh scattering from H_2, but is very similar to that of HD 189733b. The features observed in our transmission spectrum cannot be caused by stellar activity alone, with photometric monitoring of WASP-21 showing it to be an inactive star. We therefore conclude that aerosols in the atmosphere of WASP-21b are giving rise to the steep slope that we observe, and that WASP-21b is an excellent target for infra-red observations to constrain its atmospheric metallicity.
24158. WASP-19b light curves
- ID:
- ivo://CDS.VizieR/J/A+A/552/A2
- Title:
- WASP-19b light curves
- Short Name:
- J/A+A/552/A2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The sample of hot Jupiters that have been studied in great detail is still growing. In particular, when the planet transits its host star, it is possible to measure the planetary radius and the planet mass (with radial velocity data). For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. We have obtained a total of 14 transit lightcurves in the r'-Gunn, I-Cousins, z'-Gunn, and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We performed a global MCMC analysis of all new data, together with some archive data in order to refine the planetary parameters and to measure the occultation depths in z'-band and at 1.19 micron. We measure a planetary radius of R_p_=1.376+/-0.046R_J_, a planetary mass of M_p_=1.165+/-0.068M_J_, and find a very low eccentricity of e=0.0077(-0.0032/+0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be delta_F_occ,z'=352+/-116ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at delta_F_occ,NB1190=1711(-726/+745)ppm. We show that the detection of occultations in the visible range is within reach, even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.
24159. WASP-103b light curves
- ID:
- ivo://CDS.VizieR/J/A+A/606/A18
- Title:
- WASP-103b light curves
- Short Name:
- J/A+A/606/A18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties of close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H_2_O, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. We present an optical 550-960nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500K) and most massive (1.5M_J_) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. We have used Gemini/GMOS to obtain multi-object spectroscopy throughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2nm to infer the planet's transmission spectrum. We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A36
- Title:
- WASP-121b optical phase curve
- Short Name:
- J/A+A/637/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the analysis of TESS optical photometry of WASP-121b, which reveals the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the sub-stellar point, showing inefficient heat transport from the dayside (2870+/-50K) to the nightside (<2500K at 3{sigma}) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H^-^ continuum.