- ID:
- ivo://nasa.heasarc/exoplanets
- Title:
- Extrasolar Planets Encyclopedia
- Short Name:
- EXOPLANETS
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Extrasolar Planets Encyclopedia is a working tool, providing all the latest detections and data that have been announced by professional astronomers, Which is intended to be used to facilitate progress in exoplanetology. Ultimately, researchers willing to make a quantitative, scientific use of the catalog can make their own judgement on the likelihood of the data and the detections. The stellar data (positions, distances, V and other magnitudes, mass, metallicities etc) are taken from Simbad or from professional papers on exoplanets. Ongoing large extrasolar planets ('exoplanets') projects include: <pre> Anglo-Australian Planet Search <<a href="http://www.phys.unsw.edu.au/~cgt/planet/AAPS_Home.html">http://www.phys.unsw.edu.au/~cgt/planet/AAPS_Home.html</a>> California & Carnegie Planet Search <<a href="http://exoplanets.org/">http://exoplanets.org/</a>> Geneva Extrasolar Planet Search Programmes <<a href="http://obswww.unige.ch/~udry/planet/planet.html">http://obswww.unige.ch/~udry/planet/planet.html</a>> Transatlantic Exoplanet Survey <<a href="http://www.astro.caltech.edu/~ftod/tres/tres.html">http://www.astro.caltech.edu/~ftod/tres/tres.html</a>> University of Texas - Dept. of Astronomy <<a href="http://www.as.utexas.edu/astronomy/research/ss.html">http://www.as.utexas.edu/astronomy/research/ss.html</a>> </pre> This table is based on the VOTable format of the catalog obtained from the Extrasolar Planets Encyclopaedia website at <a href="http://exoplanet.eu/">http://exoplanet.eu/</a>. It is maintained by Jean Schneider and is updated on a frequent basis, as needed. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/vlulxcat
- Title:
- Extremely Luminous X-Ray Source Candidates Catalog
- Short Name:
- VLULXCAT
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Using Chandra archive data, the authors conducted a thorough survey of luminous X-ray sources. They directly analyzed about 9400 Chandra ACIS observations and cross-correlated the detected X-ray sources with 77,000 galaxies within a distance of 250 Mpc. The final catalog includes 119 unique luminous X-ray source candidates with L<sub>X</sub> > 3 x 10<sup>40</sup> erg/s from 93 galaxies or 41 HLX candidates with L<sub>X</sub> > 1 x 10<sup>41</sup> erg/s from 35 galaxies. The authors derive a moderate contamination rate due to foreground or background sources. In the reference paper, they also cross-correlate the catalog with FIRST, perform variability and periodicity tests, and analyze one HLX candidate in particular. This catalog could be a starting point to perform follow-up observations. In order to know whether an X-ray source falls within a particular galaxy, for each galaxy, the authors collected its center's RA, Dec, distance, and D<sub>25</sub> isophotal info, which includes major axis length, minor axis length, and the position angle of the major axis from the PGC2003 Catalog (Paturel et al. 2003, A&A, 412, 45), which includes the full RC3 catalog and has all of the necessary parameters except for distance. The authors restricted the minimum major axis length to be 10 arcseconds, and collected their distances from NED as much as possible. Their final sample includes 77,000 galaxies within 250 Mpc. The authors used all of the Chandra ACIS data in TE mode that were released before 2014, which includes 9400 ObsIDs. A roughly linear relation between the flux and count rate derived by PIMMS 4.6b was established assuming a power-law spectral shape and galactic foreground extinction (Kalberla et al. 2005, A&A, 440, 775). Any source with a PIMMS luminosity larger than 5 x 10<sup>39</sup> erg s<sup>-1</sup> would be recalculated by the CIAO script model flux assuming a power-law index of 1.7 in the 0.3 - 8.0 keV energy band. After the recalculation, 1,809 X-ray sources with L<sub>x</sub> > 3 x 10<sup>40</sup> erg s<sup>-1</sup> falling within 640 D<sub>25</sub> contours covered by 905 ObsIDs were picked out. A large fraction of the 1,809 sources are galactic nuclei and some of them are repeated. Only off-nuclear sources are considered in this paper. In addition, the centers of the galaxies given by PGC2003 are not necessarily precise and the specific environments of the 1,809 sources are different. Therefore, the authors visually checked the Chandra and DSS images simultaneously, since two-band inspection can help to exclude the nuclear sources, bright knots, and extended sources. X-ray sources with clear DSS features would be dropped because, for a source with a visual magnitude <20 and a distance >30 Mpc, its absolute magnitude would be brighter than -12.4, which is beyond the limit of the brightest star clusters. This table was created by the HEASARC in February 2017 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/222/12">CDS Catalog J/ApJS/222/12</a> file table1.dat, the list of very luminous X-ray source candidates found within the D<sub>25</sub> ellipses of Chandra ACIS-observed PGC2003 galaxies lying within 250 Mpc. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/erosxmm
- Title:
- Extremely Red Objects XMM-Newton Survey Catalog
- Short Name:
- EROSXMM
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the results of a deep (about 80 ks) XMM-Newton survey of the largest sample of near-infrared-selected Extremely Red Objects (R-K > 5) available to date to K<sub>s</sub> < ~19.2. At the relatively bright X-ray fluxes ((F(2-10 keV) >~ 4 x 10<sup>-15</sup> erg cm<sup>-2</sup> s<sup>-1</sup>) and near-infrared magnitude probed by the present observations, the fraction of AGN (i.e. X-ray detected) among the ERO population is small (~3.5%); conversely, the fraction of EROs among hard X-ray selected sources is much higher (~20%). The X-ray properties of the 9 EROs detected in this XMM-Newton observation indicate absorption in excess of 10<sup>22</sup> cm<sup>-2</sup> in a large fraction of them. The X-ray, optical and near-infrared properties of those X-ray selected EROs with a spectroscopic or photometric redshift nicely match those expected for type 2 quasars, the high-luminosity, high-redshift obscured AGNs predicted in baseline XRB synthesis models. A close correlation is detected between X-ray and K-band fluxes. This table contains the X-ray and optical information for the sources detected in the sum of 3 separate XMM-Newton observations of a field centered on 14 49 25, +09 00 13 (J2000.0 RA and Dec) known as the "Daddi" field (Daddi et al. 2000, A&A, 361, 535) in which 257 EROs are known to be present. The data from all 3 EPIC instruments (PN, MOS1 and MOS2) obtained in the 3 observations was combined, yielding a total exposure time for the PN of ~82 ks, and for the MOS instruments of ~78 ks. The X-ray hardness ratio (HR) and the optical to near-infrared color (R and K magnitudes) are reported for all the detected X-ray sources and their counterparts, along with the reliability of the X-ray to optical or near-infrared associations as measured by the likelihood ratios, LR(R) and LR(K). This table lists data for the 111 proposed optical/infrared counterparts for the 97 detected X-ray sources, i.e., X-ray sources with more than one possible optical/IR counterpart will have multiple entries in this table, one for each counterpart, as follows: 73 X-ray sources have secure optical/near-IR counterparts (counterpart_status=1), 7 X-ray sources have 2 possible 'likely' counterparts, and 1 X-ray source has 3 such counterparts (counterpart_status=2), 6 X-ray sources have only low-likelihood counterparts all of which lie outside the 3" matching radii (counterpart_status=3), and the remaining 9 X-ray sources lack optical and infrared photometry (counterpart_status=4). This table was created by the HEASARC in February 2007 based on the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/432/69">CDS Catalog J/A+A/432/69</a> files table1.dat and table2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/first
- Title:
- Faint Images of the Radio Sky at Twenty cm (FIRST)
- Short Name:
- FIRST
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This catalog comprises the Faint Images of the Radio Sky at Twenty cm (FIRST) Survey. The FIRST survey began in 1993, and covers the north and south Galactic caps. The present 14Dec17 version is derived from the 1993 through 2011 observations. The catalog covers a total of about 10,575 square degrees of sky (8,444 square degrees in the north Galactic cap and 2,131 square degrees in the south Galactic cap). See the coverage maps at <a href="http://sundog.stsci.edu/first/catalogs/readme_14dec17.html#coverage">http://sundog.stsci.edu/first/catalogs/readme_14dec17.html#coverage</a> for more details of the area covered. Both the northern and southern areas were chosen to coincide approximately with the area covered by the Sloan Digital Sky Survey (SDSS). The catalog is identical to the previous version of the catalog (14Mar04) except that it has more accurate data on which sources are not covered by the SDSS DR10 catalog. Approximately 1000 sources that were indicated as covered by DR10 in the previous version are now correctly marked as not covered. The source list, radio fluxes, etc., are all the same as the 14Mar04 version. In this version of the catalog, images taken in the the new EVLA configuration have been re-reduced using shallower CLEAN thresholds in order to reduce the "CLEAN bias" in those images. Also, the EVLA images are not co-added with older VLA images to avoid problems resulting from the different frequencies and noise properties of the configurations. That leads to small gaps in the sky coverage at boundaries between the EVLA and VLA regions. As a result, the area covered by this release of the catalog is about 60 square degrees smaller than the earlier release of the catalog (13Jun05), and the total number of sources is reduced by nearly 25,000. The previous version of the catalog does have sources in the overlap regions, but their flux densities are considered unreliable due to calibration errors. The flux densities should be more accurate in this catalog, biases are smaller, and the incidence of spurious sources is also reduced. Over most of the survey area, the detection limit is 1 mJy. A region along the equatorial strip (RA = 21.3 to 3.3 hrs, Dec = -1 to 1 deg) has a deeper detection threshold because two epochs of observation were combined. The typical detection threshold in this region is 0.75 mJy. There are approximately 4,500 sources below the 1 mJy threshold used for most previous versions of the catalog. The format of this catalog is the same as releases since 13Jun05 but differs from earlier versions of the catalog. It contains two parameters which give information on the epoch of observation for each source (called mean_epoch and rms_epoch in this HEASARC version) which are described below. The P(S) parameter (called sidelobe_prob herein), which indicates the probability that the source is a sidelobe, replaces the previous binary sidelobe flag column. The parameters sdss_matches, sdss_first_offset, sdss_imag, sdss_class, twomass_matches, twomass_first_offset and twomass_kmag give information on counterparts to the FIRST source in the SDSS DR10 catalog and the 2MASS catalog, respectively. Other catalog parameters are common with FIRST catalog releases extending back over the past decade. The co-added images are available online: see the FIRST page at <a href="http://sundog.stsci.edu/first/images.html">http://sundog.stsci.edu/first/images.html</a> for details. The source catalog presented here is derived from the images. Data for the FIRST survey were collected in all VLA B-configurations from Spring 1993 through Spring 2004. For all data collected for the FIRST project, the raw u-v visibility data are placed in the VLA public archive on the day they are taken, and are available for use without restriction. Additional data in the southern Galactic cap were acquired in Spring 2009 and Spring 2011. The VLA was in a hybrid condition in 2009, with some new EVLA receivers and some old VLA receivers. The characteristics of those images are slightly different from the older data, but for most purposes they should be equivalent. In 2011 the EVLA receivers were available with an early version of the new EVLA data system, so there are a number of differences from the old data: <pre> Date Frequencies Bandpass Integration Before 2011 1365, 1435 MHz 2x7 3-MHz channels 180 seconds 2011 1335, 1730 MHz 2x64 2-MHz channels 60 seconds </pre> Note particularly the frequency difference between the new and older data. The new data are in co-added fields with names ending with 'S' (and later letters in the alphabet) and are found entirely in the south Galactic cap. This table was last updated by the HEASARC in May 2015 based on the file: <a href="http://sundog.stsci.edu/first/catalogs/catalog_14dec17.bin.gz">http://sundog.stsci.edu/first/catalogs/catalog_14dec17.bin.gz</a> which contains the 17 December 2014 version of the FIRST Source Catalog. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fsvsclustr
- Title:
- Faint Sky Variability Survey Catalog of Galaxy Clusters and Rich Groups
- Short Name:
- FSVSClusGR
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Faint Sky Variability Survey Catalog of Galaxy Clusters and Rich Groups contains a a large sample of 598 galaxy clusters and rich groups discovered in the data of the Faint Sky Variability Survey (FSVS). The clusters have been identified using a fully automated, semi-parametric technique based on a maximum likelihood approach applied to Voronoi tessellation, and enhanced by color discrimination. The sample covers a wide range of richness, has a density of ~28 clusters per square degree, and spans a range of estimated redshifts of 0.05 < z < 0.9 with mean <z> = 0.345. Assuming the presence of a cluster red sequence, the uncertainty of the estimated cluster redshifts is assessed to be sigma ~ 0.03. Containing over 100 clusters with z > 0.6, the catalog contributes substantially to the current total of optically-selected, intermediate-redshift clusters, and complements the existing, usually X-ray selected, samples. The FSVS fields are accessible for observation throughout the whole year, making them particularly suited for large follow-up programs. The construction of this FSVS Cluster Catalogue completes a fundamental component of the authors' continuing program to investigate the environments of quasars and the chemical evolution of galaxies. The present table contains the list of all clusters with their basic parameters. This table was created by the HEASARC in July 2006 based on the table cluster_catalogue.txt copied from the first author's website <a href="https://web.archive.org/web/20100318044103/www-astro.physics.ox.ac.uk/~iks/FSVScatalogue/">https://web.archive.org/web/20100318044103/www-astro.physics.ox.ac.uk/~iks/FSVScatalogue/</a> (no longer available, unfortunately). Refer instead to <a href="https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/369/1334">https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/369/1334</a> for the data files and to <a href="https://www.noao.edu/survey-archives/fsvs/">https://www.noao.edu/survey-archives/fsvs/</a> for additional information about the survey. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fuselog
- Title:
- Far Ultraviolet Explorer (FUSE) Observation Log
- Short Name:
- FUSE
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- NASA's FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft provided spectra in the far-ultraviolet portion of the electromagnetic spectrum (the wavelength range from 905 - 1180 Angstroms, or 90.5 - 118 nm), with a high spectral resolution of about 20000 (one wavelength point each 5 pm). FUSE was funded by NASA as part of its Origins program, and was developed in collaboration with the space agencies of Canada and France. It was operated for NASA by the Johns Hopkins University. FUSE was launched into orbit aboard a Delta II rocket on June 24, 1999 for a nominal mission of three years of operations. This table contains the FUSE Observation Log up to May 8, 2007, as archived at CDS in summer 2007. FUSE was formally decommissioned on October 18, 2007, following the failure of the last control wheel on the spacecraft in July 2007. More information about the FUSE Project can be found at NASA's Optical and Ultraviolet Archive (MAST) at <a href="http://archive.stsci.edu/">http://archive.stsci.edu/</a> and at the Johns Hopkins FUSE web site at <a href="http://fuse.pha.jhu.edu/">http://fuse.pha.jhu.edu/</a>. This database table was updated by the HEASARC in March 2009, superceding the previous versions of May 2007, May 2004, March 2005, and April 2006. It is primarily based on the CDS table <B/fuse>, specifically, the files fuse.dat, refs.dat and proposal.dat, but also contains additional information on proposal titles and bibliographic codes obtained from the MAST FUSE Archive. The HEASARC plans to update the bibliographic metadata for this table on a monthly basis as and when new information from the latter source becomes available. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/faust
- Title:
- Faust Far-UV Point Source Catalog
- Short Name:
- FAUST
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This catalog contains a list of the photometric measurements of point sources made by the Far Ultraviolet Space Telescope (FAUST) when it flew on the ATLAS-1 space shuttle mission. The list contains 4660 galactic and extragalactic objects detected in 22 wide-field images of the sky (note that the abstract of the published catalog states that it contains 4698 sources: the reason for this discrepancy is not known to the HEASARC). At the locations surveyed, this catalog reaches a limiting magnitude that is approximately a factor of 10 fainter than the previous UV all-sky survey, TD1. The catalog limit is approximately 1x10<sup>-14</sup> ergs/s/cm<sup>2</sup>/Angstrom, although it is not complete to this level. Listed for each object is the position, Far-UV (FUV) flux, the error in this flux, and, where possible, an identification from catalogs of nearby stars and galaxies. These catalogs include the Michigan HD (MHD) and HD Catalogs, the SAO Catalog, the HIPPARCOS Input Catalog (HIC), the Position and Proper Motion (PPM) Catalog, the TD1 Catalog, the McCook and Sion Catalog of white dwarf stars, and the RC3 Catalog of Galaxies. 2239 FAUST sources are identified with objects in the stellar catalogs and 172 with galaxies in the RC3 catalog. The number of sources with incorrect identifications is estimated to be less than 2%. Of the 4660 FUV sources in this catalog, 161 have multiple stellar and/or galaxy counterparts (155 sources have 2 possible counterparts, 4 sources have 3 possible counterparts, 1 source has 4 possible counterparts, and 1 source has 6 possible counterparts), with the 4499 remaining FUV sources having 0 or 1 stellar and/or galaxy counterparts. Hence, there are a grand total of 4831 = (4499 + 155x2 + 4x3 + 1x4 + 1x6) entries in this database, since each entry corresponds to a source/counterpart combination. The HEASARC added a parameter 'multiple_ID' to allow the user to identify sources with multiple possible counterparts. FAUST Sources with multiple counterparts thus have multiple entries in this database, and can be recognized by having multiple_id values greater than 1 (and differing information in the parameter fields that contain the properties of the stellar and/or galaxy counterparts). This catalog was created at the HEASARC in September 1998 based on CDS/ADC Catalog J/ApJS/96/461. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fermi2favs
- Title:
- Fermi All-Sky Variability Analysis Second Catalog of Flaring Gamma-Ray Sources
- Short Name:
- FERMI2FAVS
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Fermi All-sky Variability Analysis (FAVA) is an analysis technique that searches for flaring sources in data collected by the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope. It uses a photometric approach to blindly search for flares over the entire sky, and a likelihood analysis to precisely locate them and to measure their spectra. This catalog contains the flares and sources detected by running FAVA over the first 7.4 years of Fermi mission, from Modified Julian Date (MJD) 54682 (2008-08-04) to 57391 (2016-01-04). The analysis has been run in weekly time bins and in two independent energy bands, 100-800 MeV and 0.8-300 GeV. The detection threshold applied to the catalog flares is equivalent to 6 sigma (pre trials). The sources in the 2FAV are identified as clusters of flares. Their position and the corresponding error are derived from a weighted average of the best localized flares in the cluster. Likely gamma-ray counterparts, based on positional coincidence, are provided for the sources. This database table was first ingested by the HEASARC in July 2017 using electronic data obtained from the Fermi Science Support Center (FSSC). That data is available at <a href="http://fermi.gsfc.nasa.gov/ssc/data/access/lat/fava_catalog/">http://fermi.gsfc.nasa.gov/ssc/data/access/lat/fava_catalog/</a>. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fer2fusrid
- Title:
- Fermi 2FGL Unassociated Gamma-Ray Sources Possible Radio Identifications
- Short Name:
- FER2FUSRID
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from an all-sky radio survey between 5- and 9-GHz of sky areas surrounding all unassociated gamma-ray objects listed in the Fermi Large Area Telescope (LAT) Second Source Catalog (2FGL). The goal of these observations is to find all new gamma-ray active galactic nucleus (AGN) associations with radio sources > 10 mJy at 8GHz. The authors observed with the Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA) the areas around unassociated sources, providing localizations of weak radio point sources found in 2FGL fields at arcminute scales. They then followed up a subset of these with the Very Long Baseline Array (VLBA) and the Long Baseline Array (LBA) in order to confirm detections of radio emission on parsec-scales. The authors quantified association probabilities based on known statistics of source counts and assuming a uniform distribution of background sources. In total, they found 865 radio sources at arcsecond scales as candidates for association and detected 95 of 170 selected for follow-up observations at milliarcsecond resolution. Based on this, they obtained firm associations for 76 previously unknown gamma-ray AGNs. Comparison of these new AGN associations with the predictions from using the Wide-field Infrared Survey Explorer (WISE) color-color diagram shows that half of the associations are missed. The authors found that in 129 out of 588 gamma-ray sources observed at arcminute scales not a single radio continuum source was detected above their sensitivity limit within the 3-sigma gamma-ray localization. These "empty" fields were found to be particularly concentrated at low Galactic latitudes. The nature of these Galactic gamma-ray emitters is not yet determined. A list of 216 target fields were observed with the VLA. The instantaneous bandwidth was split into two parts, with one half centered at 5.0 GHz (4.5 - 5.5 GHz) and the other centered at 7.3 GHz (6.8 - 7.8 GHz). The observations were made on 2012 October 26 and 2012 November 3. See section 2.1 of the reference paper for more details. These data are included in this HEASARC table. During the first campaign with the ATCA from 2012 September 19-20, the authors observed 411 2FGL unassociated sources in a Declination range of -90 degrees to +10 degrees at 5.5 and 9 GHz. The details of this observing campaign and results have been reported by Petrov et al. (2013, MNRAS, 432, 1294: available at the HEASARC as the AT2FGLUS table). The authors detected a total of 424 point sources. In a second ATCA campaign on 2013 September 25-28, the authors re-observed sources that were detected at 5 GHz, but were not detected at 9 GHz. See section 2.2 of the reference paper for more details. These data are included in this HEASARC table. Follow-up observations of 149 targets selected from the VLA and ATCA surveys above -30 degrees Declination were conducted with the VLBA between 2013 Feb-Aug (VCS7 project; 4.128 - 4.608 and 7.392 - 7.872 GHz simultaneously) and in 2013 Jun-Dec (campaign S5272; 7.392 - 7.872 GHz only). See section 2.3 of the reference paper for more details. These data are NOT included in this HEASARC table. For sources with Declination below -30 degrees, the authors added 21 objects to the on-going LCS campaign being conducted using the LBA (Petrov et al. 2011, MNRAS, 414, 2528) in 2013 Mar-2013 Jun at 8.200 - 8.520 GHz. See section 2.4 of the reference paper for more details. These data are NOT included in this HEASARC table. This table was created by the HEASARC in May 2015 based on the union of <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/217/4/">CDS Catalog J/ApJS/217/4/</a> files table2.dat (the 148 'Category I' objects that were detected at 5.0/5.5 and/or 7.3/9.0 GHz within 2.7' of the 2FGL counterpart localization), table3.dat (the 501 'Category II' objects that were detected at 5.0/5.5 and/or 7.3/9.0 GHz between 2.7' and 6.5' of the 2FGL counterpart localization) and table4.dat (the 216 'Category III' objects that were detected outside of the 6.5 arcminutes but still within the 99% positional uncertainty of the 2FGL counterpart localization). It thus contains a total of 865 objects. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fermigbrst
- Title:
- Fermi GBM Burst Catalog
- Short Name:
- FERMIGBRST
- Date:
- 14 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- When referencing results from this online catalog, please cite <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab7a18">von Kienlin, A. et al. 2020</a>, <a href="http://iopscience.iop.org/0067-0049/211/1/12/">Gruber, D. et al. 2014</a>, <a href="http://iopscience.iop.org/0067-0049/211/1/13/">von Kienlin, A. et al. 2014</a>, and <a href="http://iopscience.iop.org/article/10.3847/0067-0049/223/2/28/">Bhat, P. et al. 2016</a>. This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note that there are two Browse catalogs resulting from GBM triggers. All GBM triggers are entered in the <a href="/W3Browse/fermi/fermigtrig.html">Fermi GBM Trigger Catalog</a>, while only those triggers classified as bursts are entered in the Burst Catalog. Thus, a burst will be found in both the Trigger and Burst Catalogs. The Burst Catalog analysis requires human intervention; therefore, GRBs will be entered in the Trigger Catalog before the Burst Catalog. The latency requirements are 1 day for triggers and 3 days for bursts. There are four fewer bursts in the online catalog than in the Gruber et al. 2014 paper. The four missing events (081007224, 091013989, 091022752, and 091208623) have not been classified with certainty as GRBs and are not included in the general GRB catalog. This classification may be revised at a later stage. The GBM consists of an array of 12 sodium iodide (NaI) detectors which cover the lower end of the energy range up to 1 MeV. The GBM triggers off of the rates in the NaI detectors, with some Terrestrial Gamma-ray Flash (TGF)-specific algorithms using the bismuth germanate (BGO) detectors, sensitive to higher energies, up to 40 MeV. The NaI detectors are placed around the Fermi spacecraft with different orientations to provide the required sensitivity and FOV. The cosine-like angular response of the thin NaI detectors is used to localize burst sources by comparing rates from detectors with different viewing angles. The two BGO detectors are placed on opposite sides of the spacecraft so that all sky positions are visible to at least one BGO detector. The signals from all 14 GBM detectors are collected by a central Data Processing Unit (DPU). This unit digitizes and time-tags the detectors' pulse height signals, packages the resulting data into several different types for transmission to the ground (via the Fermi spacecraft), and performs various data processing tasks such as autonomous burst triggering. The GRB science products are transmitted to the FSSC in two types of files. The first file, called the "bcat" file, provides basic burst parameters such as duration, peak flux and fluence, calculated from 8-channel data using a spectral model which has a power-law in energy that falls exponentially above an energy EPeak, known as the Comptonized model. The crude 8-channel binning and the simple spectral model allow data fits in batch mode over numerous time bins in an efficient and robust fashion, including intervals with little or no flux, yielding both values for the burst duration, and deconvolved lightcurves for the detectors included in the fit. The bcat file includes two extensions. The first, containing detailed information about energy channels and detectors used in the calculations, is detector-specific, and includes the time history of the deconvolved flux over the time intervals of the burst. The second shows the evolution of the spectral parameters obtained in a joint fit of the included detectors for the model used, usually the Comptonized model described above. The bcat files and their time-varying quantities contained in these two extensions are available at the HEASARC FTP site. Quantities derived from these batch fits are given in the bcat primary header and presented in the Browse table, as described below. The main purpose of the analysis contained in the bcat file is to produce a measure of the duration of the burst after deconvolving the instrument response. The duration quantities are: <pre> * 't50' - the time taken to accumulate 50% of the burst fluence starting at the 25% fluence level. * 't90' - the time taken to accumulate 90% of the burst fluence starting at the 5% fluence level. </pre> By-products of this analysis include fluxes on various timescales and fluences, both obtained using the simple Comptonized model described above. These quantities are detailed in the Browse table using the following prefixes: <pre> * 'flux' - the peak flux over 3 different timescales obtained in the batch mode fit used to calculate t50/t90. * 'fluence' - the total fluence accumulated in the t50/t90 calculation. </pre> The fluxes and fluences derived from the 8-channel data for these bcat files should be considered less reliable than those in the spectral analysis files described below. Analysis methods used in obtaining these quantities are detailed in the first GBM GRB Catalog (Paciesas et al. 2011). Updates of bcat files will be sent (with new version numbers) as these parameters are refined. This "bcat" file is produced for triggers that are classified as GRBs (with exceptions as described below), and supplements the initial data in the trigger or "tcat" file that is produced for all triggers. The second type of file (the spectrum or "scat" file) provides parameter values and goodness-of-fit measures for different types of spectral fits and models. These fits are performed using 128-channel data, either CSPEC or, for short bursts, TTE data. The type and model are coded into the file name. There are currently two spectrum categories: <pre> * Peak flux ('pflx') - a single spectrum over the time range of the peak flux of the burst * Fluence ('flnc') - a single spectrum over the entire burst duration selected by the duty scientist. </pre> Like the bcat files, the scat files have two extensions. The first extension gives detector-specific information, including photon fluxes and fluences for each detector, which are provided for each energy channel. The second extension provides derived quantities such as flux, fluence and model parameters for the joint fit of all included detectors. The scat files and their energy-resolved quantities contained in these two extensions are available in the Fermi data archive at the HEASARC. Quantities derived from these spectral fits are available in the Browse table, as described below and in Goldstein et al. (2011). The spectra are fit with a number of models, with the signal-to-noise ratio of the spectrum often determining whether a more complex model is statistically favored. The current set is: <pre> * Power law ('plaw'), * Comptonized (exponentially attenuated power law; 'comp') * Band ('band') * Smoothly broken power law ('sbpl') </pre> <b>Warnings</b> The bcat and scat files result from two completely independent analyses, and consequently, it is possible that the same quantities might show differences. Indeed, 1) the fluxes and fluences in the "scat" files should be considered more reliable than those in the "bcat" files, with the official fluxes and fluences being those yielded by the statistically favored model ("Best_Fitting_Model" in the Browse table) and with the full energy resolution of the instrument; 2) in both the bcat and scat analyses, the set of detectors used for the fits ("Scat_Detector_Mask" in the Browse table) may not be the same as the set of detectors that triggered GBM ("Bcat_Detector_Mask" in the Browse table); 3) background definitions are different for the bcat and scat analysis (see References below). Finally, for weak events, it is not always possible to perform duration or spectral analyses, and some bursts occur too close in time to South Atlantic Anomaly entries or exits by Fermi with resultant data truncations that prevent background determinations for the duration analysis. There is not an exact one-to-one correspondence between those events for which the duration analysis fails and those which are too weak to have a useful spectral characterization. This means that in the HEASARC Browse table there are a handful of GRBs which have duration parameters but not spectral fit parameters, and vice versa. In these cases, blank entries in the table indicate missing values where an analysis was not possible. Values of 0.0 for the uncertainties on spectral parameters indicate those parameters have been fixed in the fit from which other parameters or quantities in the table were derived. Missing values for model fit parameters indicate that the fit failed to converge for this model. This is true mostly for the more complicated models (SBPL or BAND) when the fits fail to converge for weaker bursts. Bad spectral fits can often result in unphysical flux and fluence values with undefined errors. We include these bad fits but leave the error fields blank when they contain undefined values. The selection criteria used in the first catalog (Goldstein et al. 2011) for the determination of the best-fit spectral model are different from those in the second catalog (Gruber et al. 2014). The results using the two methods on the sample included in Goldstein et al. (2011) are compared in Gruber et al. (2014). The old catalog files can be retrieved using the HEASARC ftp archive tree, under "previous" directories. The values returned by Browse always come from the "current" directories. The chi-squared statistic was not used in the 2nd catalog, either for parameter optimization or model comparison. The chi-squared values are missing for a few GRBs. This is believed to be because of a known software issue and should not be considered indicative of a bad fit. The variable "scatalog" included in the Browse tables and in the FITS files indicates which catalog a file belongs to, with 2 being the current catalog, and 1 (or absent) the first catalog (preliminary values may appear with value 0). The information in this table is provided by the Fermi Gamma-ray Burst Monitor Instrument Operations Center (GIOC) and the Fermi Science Support Center (FSSC). The values come from burst and spectral catalog entry FITS files provided by the GIOC to the FSSC. These FITS files may contain additional data and are available for download. This table is updated automatically within a day or so of new data files being processed and made available. This is a service provided by NASA HEASARC .