- ID:
- ivo://CDS.VizieR/J/A+A/630/A90
- Title:
- Halpha emission-line stars in Canis Major
- Short Name:
- J/A+A/630/A90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A deep objective-prism survey for H-alpha emission stars towards the Canis Major star-forming clouds was performed. A total of 398 Halpha emitters were detected, 353 of which are new detections. There is a strong concentration of these H-alpha emitters towards the molecular clouds surrounding the CMa OB1 association, and it is likely that these stars are young stellar objects recently born in the clouds. An additional population of H-alpha emitters is scattered all across the region, and probably includes unrelated foreground dMe stars and background Be stars. About 90% of the H-alpha emitters are detected by WISE, of which 75% was detected with usable photometry. When plotted in a WISE colour-colour diagram it appears that the majority are Class II YSOs. Coordinates and finding charts are provided for all the new stars, and coordinates for all the detections. We searched the Gaia-DR2 catalogue and from 334 Halpha emission stars with useful parallaxes, we selected a subset of 98 stars that have parallax errors of less than 20% and nominal distances in the interval 1050 to 1350pc that surrounds a strong peak at 1185pc in the distance distribution. Similarly, Gaia distances were obtained for 51 OB-stars located towards Canis Major and selected with the same parallax errors as the H-alpha stars. We find a median distance for the OB stars of 1182pc, in excellent correspondence with the distance from the H-alpha stars. Two known runaway stars are confirmed as members of the association. Finally, two new Herbig-Haro objects are identified.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/903/111
- Title:
- HCN, HNC, H13CN & HC3N of Galactic Center map. II.
- Short Name:
- J/ApJ/903/111
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We report a statistical analysis exploring the origin of the overall low star formation efficiency (SFE) of the Galactic central molecular zone (CMZ) and the SFE diversity among the CMZ clouds using a wide-field HCN J=4-3 map, whose optically thin critical density (~10^7^/cm^3^) is the highest among the tracers ever used in CMZ surveys. Logistic regression is performed to empirically formulate star formation probability of 195 HCN clumps, 13 of which contain star formation signatures. The explanatory parameters in the best-fit model are reduced into the virial parameter {alpha}_vir_ without significant contribution from other parameters, whereas the performance of the model without {alpha}_vir_ is no better than that using randomly generated data. The threshold {alpha}_vir_ is 6, which translates into a volume density (n_H_2__) of 10^4.6^/cm^3^ with the n_H_2__-{alpha}_vir_ correlation. The scarcity of the low-{alpha}_vir_ clumps, whose fraction to all HCN clumps is 0.1, can be considered as one of the immediate causes of the suppressed SFE. No correlation between the clump size or mass and star formation probability is found, implying that HCN J= 4-3 does not immediately trace the mass of star-forming gas above a threshold density. Meanwhile, star-forming and non-star-forming clouds are degenerate in the physical parameters of the CS J=1-0 clouds, highlighting the efficacy of the HCN J=4-3 line to probe star-forming regions in the CMZ. The timescale of the high-{alpha}_vir_ to low-{alpha}_vir_ transition is <~2Myr, which is consistent with the tidal compression and X1/X2 orbit transition models but possibly does not fit the cloud-cloud collision picture.
- ID:
- ivo://CDS.VizieR/J/ApJ/867/167
- Title:
- High-mass outflows from the COHRS CO(3-2) survey
- Short Name:
- J/ApJ/867/167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An unbiased search of molecular outflows within the region of the CO High Resolution survey has identified 157 high-mass outflows from a sample of 770 APEX Telescope Large Area Survey of the Galaxy clumps with a detection rate of 20%. The detection rate of outflows increases for clumps with higher M_clump_, L_bol_, L_bol_/M_clump_,N_H2_, and T_dust_ compared to the clumps with no outflow. The detection rates of the outflow increase from protostellar (8%) to young stellar object clump (17%) to massive star-forming clump (29%). The detection rate 26% for quiescent clump is preliminary, because the sample of quiescent clumps is small. A statistical relation between the outflow and clump masses for our sample is log(M_out_/M_{sun}_)=(-1.1+/-0.21)+(0.9+/-0.07)log(M_clump_/M_{sun}_). The detection rate of outflows and the outflow mass-loss rate show an increase with increasing M_clump_, L_bol_, N_H_2_, and T_dust_, which indicates that clumps with outflow with higher parameter values are at a more advanced evolutionary stage. The outflow mechanical force increases with increasing bolometric luminosities. No clear evidence has yet been found that higher-mass outflows have different launching conditions than low-mass outflows.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A103
- Title:
- 19 highmass SFR Herschel spectra and maps
- Short Name:
- J/A+A/625/A103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The physical conditions during high-mass star formation are poorly understood. Outflow and infall motions have been detected around massive protostellar objects, but their dependence on mass, luminosity, and age is unclear. In addition, physical conditions and molecular abundances are often estimated using simple assumptions such as spherical shape and chemical homogeneity, which may limit the accuracy of the results. We aim to characterize the dust and gas distribution and kinematics of the envelopes of high-mass protostars. In particular, we search for infall motions, abundance variations, and deviations from spherical symmetry, using Herschel data from the WISH program. We used HIFI maps of the 987GHz H_2_O 2_02_-1_11_ emission to measure the sizes and shapes of 19 high-mass protostellar envelopes. To identify infall, we used HIFI spectra of the optically thin C^18^O 9-8 and H_2_^18^O 1_11_-0_00_ lines. The high-J C^18^O line traces the warm central material and redshifted H_2_^18^O 1_11_-0_00_ absorption indicates material falling onto the warm core. We probe small-scale chemical differentiation by comparing H_2_O 752 and 987GHz spectra with those of H_2_^18^O. Our measured radii of the central part of the H_2_O 2_02_-1_11_ emission are 30-40% larger than the predictions from spherical envelope models, and axis ratios are <2, which we consider good agreement. For 11 of the 19 sources, we find a significant redshift of the H_2_^18^O 1_11_-0_00_ line relative to C^18^O 9-8. The inferred infall velocities are 0.6-3.2km/s, and estimated mass inflow rates range from 7x10^-5^ to 2x10^-2^M_{sun}_/yr. The highest mass inflow rates seem to occur toward the sources with the highest masses, and possibly the youngest ages. The other sources show either expanding motions or H_2_^18^O lines in emission. The H_2_^18^O 1_11_-0_00_ line profiles are remarkably similar to the differences between the H_2_O 2_02_-1_11_ and 2_11_-2_02_ profiles, suggesting that the H_2_^18^O line and the H_2_O 2_02_-1_11_ absorption originate just inside the radius where water evaporates from grains, typically 1000-5000au from the center. In some sources, the H_2_^18^O line is detectable in the outflow, where no C^18^O emission is seen. Together, the H_2_^18^O absorption and C^18^O emission profiles show that the water abundance around high-mass protostars has at least three levels: low in the cool outer envelope, high within the 100K radius, and very high in the outflowing gas. Thus, despite the small regions, the combination of lines presented in this work reveals systematic inflows and chemical information about the outflows.
- ID:
- ivo://CDS.VizieR/J/other/ApSS/361.191
- Title:
- High-mass star forming clumps from MALT90
- Short Name:
- J/other/ApSS/361
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A total of 197 relatively isolated high-mass star-forming clumps were selected from the Millimeter Astronomy Legacy Team 90GHz (MALT90) survey data and their global chemical evolution investigated using four molecular lines, N_2_H^+^(1-0), HCO^+^(1-0), HCN(1-0), and HNC(1-0). The results suggest that the global averaged integrated intensity ratios I(HCO^+^)/I(HNC), I(HCN)/I(HNC), I(N_2_H^+^)/I(HCO^+^), and I(N_2_H^+^)/ I(HCN) are promising tracers for evolution of high-mass star-forming clumps. The global averaged column densities and abundances of N_2_H^+^, HCO^+^, HCN, and HNC increase as clumps evolve. The global averaged abundance ratios X(HCN)/X(HNC) could be used to trace evolution of high-mass star forming clumps, X(HCO^+^)/X(HNC) is more suitable for distinguishing high-mass star-forming clumps in prestellar (stage A) from those in protostellar (stage B) and HII/PDR region (stage C). These results suggest that the global averaged integrated intensity ratios between HCN(1-0), HNC(1-0), HCO^+^(1-0) and N_2_H^+^(1-0) are more suitable for tracing the evolution of high-mass star forming clumps. We also studied the chemical properties of the target high-mass star-forming clumps in each spiral arm of the Galaxy, and got results very different from those above. This is probably due to the relatively small sample in each spiral arm. For high-mass star-forming clumps in Sagittarius arm and Norma-Outer arm, comparing two groups located on one arm with different Galactocentric distances, the clumps near the Galactic Center appear to be younger than those far from the Galactic center, which may be due to more dense gas concentrated near the Galactic Center, and hence more massive stars being formed there.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A87
- Title:
- Hub-filament candidates
- Short Name:
- J/A+A/642/A87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Star formation takes place in giant molecular clouds, resulting in mass-segregated young stellar clusters composed of Sun-like stars, brown dwarves and massive O-type (50-100M_{sun}_) stars. To identify candidate hub-filament systems (HFS) in the Milky-Way and examine their role in the formation of the highest mass stars and star clusters. Filaments around ~35000 HiGAL clumps that are detected using the DisPerSE algorithm. Hub is defined as a junction of three or more filaments. Column density maps were masked by the filament skeletons and averaged for HFS and non-HFS samples to compute the radial profile along the filaments into the clumps. ~3700~(11%) are candidate HFS of which, ~2150~(60%) are pre-stellar, ~1400~(40%) are proto-stellar. All clumps with L>10^4^L_{sun}_ and L>10^5^L_{sun}_ at distances respectively within 2kpc and 5kpc are located in the hubs of HFS. The column-densities of hubs are found to be enhanced by a factor of ~2 (pre-stellar sources) up to ~10 (proto-stellar sources). All high-mass stars preferentially form in the density enhanced hubs of HFS. This amplification can drive the observed longitudinal flows along filaments providing further mass accretion. Radiation pressure and feedback can escape into the inter-filamentary voids. We propose a 'filaments to clusters' unified paradigm for star formation, with the following salient features: a) low-intermediate mass stars form in the filaments slowly (10^6^yr) and massive stars quickly (10^5^yr) in the hub, b) the initial mass function is the sum of stars continuously created in the HFS with all massive stars formed in the hub, c) Feedback dissipation and mass segregation arise naturally due to HFS properties, and c) explain age spreads within bound clusters and formation of isolated OB associations.
- ID:
- ivo://CDS.VizieR/J/AJ/161/206
- Title:
- Infrared imaging of new born cluster H72.97-69.39
- Short Name:
- J/AJ/161/206
- Date:
- 20 Jan 2022
- Publisher:
- CDS
- Description:
- Young massive clusters and super star clusters (SSCs) represent an extreme mode of star formation. Far-infrared imaging of the Magellanic Clouds has identified one potential embedded SSC, HSO-BMHERICC-J72.971176-69.391112 (H72.97-69.39 in short), in the southwest outskirts of the Large Magellanic Cloud. We present Gemini Flamingos 2 and GSAOI near-infrared imaging of a 3'x3' region around H72.97-69.39 in order to characterize the stellar content of the cluster. The stellar content is probed down to 1.5M{sun}. We find substantial dust extinction across the cluster region, extending up to A_K_ of 3. Deeply embedded stars are associated with ALMA-detected molecular gas suggesting that star formation is ongoing. The high spatial resolution of the GSAOI data allows identification of the central massive object associated with the ^13^CO ALMA observations and detection of fainter low-mass stars around the H30{alpha} ALMA source. The morphology of the molecular gas and the nebulosity from adjacent star formation suggest they have interacted covering a region of several parsecs. The total stellar content in the cluster is estimated from the intermediate and high-mass stellar content to be at least 10000M{sun}, less than R136 with up to 100000M{sun} within 4.7pc radius, but places it in the regime of an SSC. Based on the extinction determination of individual stars we estimate a molecular gas mass in the vicinity of H72.97-69.39 of 6600M{sun}, suggesting more star formation can be expected.
- ID:
- ivo://CDS.VizieR/J/ApJ/849/1
- Title:
- Insights from synthetic star-forming regions. II.
- Short Name:
- J/ApJ/849/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use a large data set of realistic synthetic observations (produced in Paper I (2017ApJS..233....1K) of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those "contaminated" pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: +9%; -13%) up to 10kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now {chi}^2^ values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase.
- ID:
- ivo://CDS.VizieR/J/ApJ/849/2
- Title:
- Insights from synthetic star-forming regions. III.
- Short Name:
- J/ApJ/849/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Through an extensive set of realistic synthetic observations (produced in Paper I, 2017ApJS..233....1K), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24{mu}m, 70{mu}m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star- forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.
- ID:
- ivo://CDS.VizieR/J/ApJ/869/72
- Title:
- IN-SYNC. VIII. YSOs in NGC 1333, IC 348 and Orion A
- Short Name:
- J/ApJ/869/72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we address two issues related to primordial disk evolution in three clusters (NGC1333, IC348, and OrionA) observed by the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged over the spread of age, we investigate how disk lifetime is dependent on stellar mass. The general relation in IC348 and OrionA is that primordial disks around intermediate-mass stars (2-5M_{sun}_) evolve faster than those around loss-mass stars (0.1-1M_{sun}_), which is consistent with previous results. However, considering only low-mass stars, we do not find a significant dependence of disk frequency on stellar mass. These results can help to better constrain theories on gas giant planet formation timescales. Second, in the OrionA molecular cloud, in the mass range of 0.35-0.7M_{sun}_, we provide the most robust evidence to date for disk evolution within a single cluster exhibiting modest age spread. By using surface gravity as an age indicator and employing 4.5{mu}m excess as a primordial disk diagnostic, we observe a trend of decreasing disk frequency for older stars. The detection of intra-cluster disk evolution in NGC1333 and IC348 is tentative, since the slight decrease of disk frequency for older stars is a less than 1{sigma} effect.